

TiberCAD flow-chart

www.tiberlab.com

tiber CAD

Point(1) = $\{-25,0,0,0.5\};$ Point(2) = $\{0,0,0,0.002\};$ Point(3) = $\{25,0,0,0.5\};$ Line(1) = $\{1,2\};$ Line(2) = $\{2,3\};$

Geo file for GMSH: geometrical model

Physical Line("p_side") = {2}; Physical Line("n_side") = {1};

Physical entities: *mesh regions* to which external program can refer

Physical Point("cathode") = {3}; Physical Point("anode") = {1}; Boundary regions: *n-1* dimension, for boundary conditions (contacts)

lc = 0.001;

Definition of a variable

Point(1) = {0,0,0,lc};

Point is defined by a list of four numbers: three coordinates (X, Y and Z), and a **characteristic length** (**Ic**) that sets the target element size at the point

The *distribution of the mesh element sizes* is

then obtained by interpolation of these characteristic lengths throughout the geometry.

Line $(1) = \{1,2\}$; Line $(2) = \{3,2\}$; Line $(3) = \{3,4\}$; Line $(4) = \{4,1\}$;

A *straight line* is defined by a list of point numbers. Here the line 1 starts at point 1 and ends at point 2

Line Loop(5) =
$$\{4, 1, -2, 3\}$$
;

A line loop is a list of connected lines

Plane Surface(6) = {5};

A surface is a list of line loops

Plane Surface(127) = $\{126\};$

Surface Loop $(128) = \{127, 119, 121\};$

 $Volume(129) = \{128\};$

A *surface loop* is a list of plane surfaces ("shells")

A Volume is a list of surface loops

Physical Point(1) = $\{1,2\}$;

Physical Line("MyLine") = $\{1,2,4\}$;

```
Physical Surface("My_surface") = {6};
```

Physical Volume ("My_volume") = {...};

Physical entities will group elements belonging to several elementary entities by giving them a common ID (a *region name*).

This *region name* will be referred to in tiberCAD input file

Extrusion

```
Extrude {0, 0, 10} {Surface{11}; }
```

extrudes the surface 11 along the z axis and automatically creates a new volume (as well as all the needed points, lines and surfaces

Characteristic Length {103, 105, 109} = lc * 3;

The following command permits to manually assign a characteristic length to some of the new points

Mesh Extrusion

Extrude {0,0,h} {Surface {6}; Layers { 7}; }

by specifying 'Layers' in Extrude command instead of only extruding the geometry, we extrude also the 2D mesh along z axis

Extrude {0,0,h} {Surface{6}; Layers{ {8,2}, {0.5,1} };}

2 layers in this case, the first one with 8 subdivisions and the second one with 2 subdivisions, both with a height of h/2

Extrude {0,0,h} {Surface{6}; Layers{ {8,2}, {0.5,1} }; Recombine; }

the resulting mesh can be recombined into prisms with the parameter *Recombine*

Mesh Extrusion

Out_list[] = Extrude {0,0,h} {Surface{6}; Layers{ {8,2}, {0.5,1} }; Recombine;};

we can retrieve the volume number by using the return value (a list) of the *Extrude* command. This *list* contains the "top" extruded surface (in out[0]), the newly created volume (in out[1]) and the ids of the lateral surfaces (in out[2], out[3], ...)

Physical Volume(101) = {1, 2, out_list[1]};

we can then use the volume obtained from the extrusion through the list *out_list*

Modeling / Meshing

gmsh mosfet.geo -2 -o mosfet.msh

tiber CAD

Output Visualization: Paraview

📕 Kitware ParaView 3.2.1								
<u>File E</u> dit <u>V</u> iew <u>S</u> o	urces Filters Animation	<u>T</u> ools <u>H</u> elp						
6 6 🕅	2 2 🕰 🕰	👰 🔃 🤌 (a M <			Time: 0	0	
electron_de	ensity 👻 Surface	• 🐹 🗳	t× t+	# # 🛱	3	G		
Pipe	ine Browser - http://doi.org/10.00000000000000000000000000000000000							
builtin:	dal Vo 1 000 vdk							
	Juai_vg_1.000.vtk							
			_		-			
				_	/			
onononononono Obje	et Inspector - sosossossossossos	ð×						
Properties Display	Information							
🗶 Visible	Zoom To Data							
- Color								
X Interpolate Color	's							
X Map Scalars								
Color by	o electron_density 💌							
Edit Color Map	Rescale to Data Range							
_ Style	(
Representation	Surface 🔻	¥						
Interpolation	Gouraud		 ¥					
Point size	5.00							
Line width	1.00	÷						
				×				

Input file structure

```
Device
meshfile = InGaAs_1D.msh
Region n_side
 material= Si
 Doping
    density = 1e18
    type = donor
```

Device description: mesh file reference, regions definition, material, doping, etc.

Input file structure/2

```
Module driftdiffusion
```

```
name= dd
regions = all
plot = (Ec, Ev, Eg, ElField,...)
```

```
Physics
```

```
{
```

```
strain_simulation = strain
polarization (piezo, pyro) { }
recombination srh { }
```

```
Contact cathode
{
type = ohmic
voltage = 0.0
```

Modules definition: associated regions, physical models, boundary conditions (contacts), etc.


```
www.tiberlab.com
```


Input file structure/3

```
Simulation
{
  dimension = 1
  temperature = 300
  solve = (strain, driftdiffusion,
   quantum_electrons,quantum_holes)
```

resultpath = output

output_format = grace

Simulation definition: simulation flow, output control

Bravais vectors with Miller indices for wurtzite (4-tuple) or zincblende (3-tuple) crystal along the x, y and z directions.

Block <u>Device</u>

```
Region region_name
{
    .....
    Doping
{
    density = doping conc. [cm <sup>-3</sup> ]
    type = donor/acceptor
    level = dopant energy level [eV ]
}
```

Doping associated to a Region

Block **Device**

Cluster groups different regions with possibly different materials in a logical unit with a common name. (used e.g. for a definition of a quantum region) Cluster cluster_name_1
{
 regions = (list_of_regions)
}
Cluster cluster_name_2
{
 regions = (list_of_regions)
}

The regions of the device associated to the Modules simulation will be indicated by means of *Region* and *Cluster* names.

Block <u>Simulation</u>

To define general parameters such as the temperature and the output settings for the actual calculation to be run, that is the process-flow of the simulation.

Simulation

temperature = *temp* verbose = *info level*

solve = (list of simulations)
resultpath = output path
output_format = vtk/grace

Process-flow of the simulation:

- Simulations will be performed in the order defined in *solve*
- □ Special simulations are *sweep* and *selfconsistent*

